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Background

On April 26, 2007, the Air Resources Board (ARBppitd a new airborne toxic control
measure (ATCM) to reduce formaldehyde emissions ftomposite wood products.
The regulation specifies technology-forcing linfits formaldehyde emissions from
composite wood products. The limits vary by prddype, and will be reduced in two
phases between 2009 and 2012.

The regulation requires manufacturers to certigirtbroducts before they are shipped to
ensure they meet the emission limits. Manufactuneust have their routine
formaldehyde emission testing verified by a thiadtp certifier (TPC). The primary
method used by third party certifiers for testiognialdehyde emissions from composite
wood products is the so-called large chamberwdsth requires a test chamber of at
least 22 M (22,000 liters). As part of the rulemaking prasestaff received comments
from several parties sharing concern about the déddtikrge chamber testing capabilities,
both domestically and in foreign countries. Seaféluated the concern and concluded
that testing flexibility is warranted. HoweveraBtalso believes that adding flexibility
should not come at the expense of reducing theracguprecision and integrity of the
third party certification program.

In order to allow flexibility in certifying produst the regulation also allows a secondary
method to be used. The secondary method is ealigratiscaled down, “bench top”
version of the large chamber test. In order tausnghat using the secondary method
does not compromise the certification processregalation requires that manufacturers
and TPCs wishing to use the secondary method derateghat their implementation of
the secondary method yields results that are elguvéo the primary method. The
regulation specifies the test for demonstrating\eence in detail. We believe the
secondary method is easier and less costly to mmaie by allowing chambers as small
as 20 liters to be used.

This document discusses the rationale used by ARBte develop a statistical test for
demonstrating equivalence between the primary aodrslary methods. It discusses the
statistical performance of the test on realistioidated data sets.

This document is intended for technical readerk @ait understanding of statistics.



Statistical theory and methodology

Introduction: why not use the Studénést?

Before describing the test used in the regulatipegin by discussing another type of
test which wasiot used: the conventional one-sample Studéggt encountered in
elementary statistical textbooks. This subjedfimterest partly because in preliminary
discussions several participants asked why theegtaidest was not used, and partly
because it helps motivate the discussion thatvilo

In the classic one-sample Studetdst we seek to determine whether the mean of a
random variable is different from zero. In the & of comparing large versus small
chamber methods, the variable would be the biasiean difference between paired
samples by both tests. We form the statistic

X

S/JN

where X is the mean difference between paired samplése sample size, arithe
standard deviation of the differences. We comgangth a percentile of the Studeint
distribution withN — 1 degrees of freedom and deem the bias différemt zero when
exceeds the percentile.

T=

The choice of percentile controls the probabilityuslging the methodsot equivalent
when they actually are equivalent; that is, juddgimg bias different from zero when it is
actually zero. This probability is the false faduate.

The test does not explicitly control the probabibf judging the methods equivalent
when they are actually not equivalent, or falsespate.

The one-sample Studeintest is not suitable for proving equivalence beteethods
for several reasons:

* For an equivalence test to be meaningful, applgcemist demonstrate
equivalence with a high degree of probability (Ifalse pass rate). The Studént
test is designed to control the false failure ratg,the false pass rate. With the
low sample sizes encountered in practice, its fpéss rate may be unacceptably
high.

* A well-designed test should reward the applicanbiing more precise. The
Studentt test does the opposite: the sma8és, the largef becomes, and the
greater the probability of failing the test.

* A well-designed test should reward the applicanttilecting more samples.
Again, the Studertttest does the opposite: the larbyes, the largeil becomes,
and the greater the probability of failing the test
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How an ideal test behaves
An ideal equivalence test has false failure ratkéfaise pass rate equal to zero. An
example is shown below.

Behavior of an ideal equivalence test
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The failure rate is the probability of a sampldifg the test. The “test variable” could
refer to the bias, the standard deviation, or stasistic constructed from both of these.
For an ideal test, the variable passes the tebtpuitbability 1 when it is in the
acceptable range, and fails with probability 1 wites not.

How should an acceptable range be chosen? Fqrideadly the acceptable range would
consist of a point at zero. Of course, in realityg bias between two methods will always
be nonzero, but one can require that it be smialtive to the precision of the methods.
For precision, we can deduce a reasonable valoeifiterlaboratory studies, ASTM
method repeatability, etc.
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How realistic tests behave
More realistic test behavior is illustrated by ttert below.

Comparison of arealistic equivalence test with an ideal test
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Realistic tests differ from the ideal in that theaff is not sharp; sometimes the test
shows equivalence when the test variable is ntiteracceptable range, and vice versa.
However, we would like the test behavior to apphothe ideal behavior as sample size
increases, as indicated by the arrows.
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Choosing the form of the test
Several possible forms for the test were considefdtwere of the general form

a|X|+a,S<C

where X is the mean difference between meth@thie standard deviation of the
differences,a, anda, constants or functions of the sample size,@rdconstant. This
form is motivated by the following reasoning. Sape an applicant is required to
demonstrate that a confidence interval for the bfabe secondary method falls entirely
within specified limits+C, as illustrated below.

L) |
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Confidence interval for bias,
centered on X

The confidence interval will take the forik + pS, where the expressigninvolves a
percentile of a normal or Studerdistribution, and perhaps a function of the sanspie
N. Requiring that the confidence interval fall viitC leads to the criterioh>_(| + pS.

The more general form above allows us to adjustdsiestatistic so that it better
approximates the ideal behavior.

Statistics of this form
» Can be designed to control the false pass rateeb@svthe false failure rate
» Reward the applicant for smaller be® better precision by increasing the
probability of passing the test
* Reward the applicant for collecting more samplegbyeasing the probability of
passing the test

The following variants were considered:

ZG

JN

whereZ , is a percentile of the normal distribution,

S

Normal version ‘)7‘ +

2-5



TN -la

N

whereT, , , is a percentile of the Studendistribution withN — 1 degrees of freedom,
and

S

Student version W +

Constant coefficient version a,|X| +a,S

wherea, anda, are constants.

Since closed form computations with the test stesigiven above can be difficult if not
impossible, staff assessed their performance Wmge Carlo simulations. Random
data sets were generated using normal error disiiis, choosing typical standard
deviations based on sample data sets, as discussedfollowing section. For each
version of the test, the lim@ was selected to yield a failure rate of 0.10 feample size
of 5, assuming zero bias.
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Data analysis and perfor mance assessment

Realistic values for bias and standard deviation

Staff received two sets of test data comparingptimaary and secondary methods. These
data sets were used to estimate the bias and ipreatsvarious ranges of formaldehyde
concentration. The data sets are labeled A aralk@e¢p the names of the data suppliers
confidential.

The regulation requires that measurements givatitjrby the respective methods be
used to compare the methods. The secondary methgahot be calibrated against the
primary method.

According to the regulation, the average of thegdicate samples by the secondary
method is to be compared against a single sampllebgrimary method. Data set A
included 4-6 replicates by the secondary metho@g&sh primary method sample. An
estimate of the sample standard deviaSgrof the differences between a primary
method sample and the average of the three comdsmpsecondary method samples
was obtained by resampling. In addition, a sepagatimate of the precision standard
deviationS;, of the secondary method was computed by pooliagtandard deviations

of replicate samples. The val@/\/f% may be taken as an independent estimate of a

lower bound org,. The following table summarizes the results iftsuaf parts per
million (ppm).

Summary of data set A

Range Number of Number of X S,/V3 | Sw
primary secondary
method samples | method samples
Low 0-0.07 2 10 +0.01R0.013 0.012
Mid 0.07-0.15| 13 72 -0.006| 0.014 0.024
High 0.15-0.28 7 40 -0.008| 0.012 0.022

The valueS;; = 0.012 for the low range is very unreliable, hessait is based on only two
primary method samples. The valSg/~/3 = 0.013, based on ten secondary method
samples, is a more realistic lower bound.

Data set B only included a single secondary mesiamdple for each primary method
sample. Therefore, it was not possible to estirBgtandS,. However, the standard
deviation of the differences between the primaryhoeé sample and the single secondary
method sample was computed as an upper bouggh.on



Summary of data set B

Range Number of samples | X Si2
Low 0-0.07 10 +0.012 <0.012
Mid 0.07 - 0.15 14 +0.011 <0.011
High 0.15-0.25| O -- --

Repeatability of the primary method, ASTM E 133321®2), and secondary method,
ASTM D 6007-02, indicated a precision of within:

Primary 0.03 ppm
Secondary 0.01 - 0.02 ppm

With these values in mind, a rough estimate forsth@dard deviation of the differences

between one primary method sample and the avefabeee replicate secondary method
samples is

(0022 + 003* /3)¥? = 0.032,

slightly higher than the standard deviation for i and high range in data set A.

The following values were chosen as typical stashdi@viations for the differences:

Low range 0.015
Mid range 0.022
High range 0.030

The low value is a conservative estimate basedatenskts A and B. The high value
represents a compromise between data set A analine suggested by the ASTM
repeatability. The mid value is halfway betweea tivo. The standard deviations
increase with concentration, which makes the tesemstringent at lower concentrations.
It is also consistent with the typical behaviomwdny analytical methods for air
contaminants. These standard deviations wereinged Monte Carlo simulations to
assess the performance of the different candidatons of the test.



Simulation results: normal version

The graph below shows curves of bias versus faratefor the normal version. The
curves are based on Monte Carlo simulations, asguennormal error distribution with a
standard deviation of 0.030. Numbers indicate samajzles. At zero bias, the failure rate
decreases exponentially with increasing sample dtmvever, with sample sizes of 5 —
10, the failure rate curves almost overlap wherbihs is high, so the failure rate at high
bias increases very slowly as sample size increasasndesirable characteristic.

Failurerate versushiasfor normal version
C =0.052, sd = 0.030
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SinceX andSconverge to their respective population parametersasymptotic behavior
of the constant coefficient testls— o is easily ascertained. The failure curves for the
bias, with standard deviation held constant at@.@Bproaches the ideal step function
described above, with a maximum acceptable bi&% of 0.052. While the asymptotic
value does not accurately reflect the behavioowtdample sizes, it is useful to know in
that the failure curves for different sample sirgsrsect at that value. Below this value,
the failure rate decreases as sample size incress®ee it, the failure rate increases.
The failure curve for the standard deviation with bias held constant at zero (not
shown) does not converge to a step function NAscreases, the acceptable standard
deviation increases without limit.
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Simulation results: Studehtersion
The Student version of the test displays the same charadteyias the normal version,
to an even higher degree, as shown in the gramwbel

Failurerateversushiasfor Student t version
C =0.066, sd = 0.030
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The asymptotic behavior of the Studemersion is identical with that of the normal
version. As sample size increases, the failureector the bias converges to a step
function with the step occurring at C, or 0.066jle/the failure curve for the standard
deviation (not shown) does not converge to a siaption.
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Simulation results: constant coefficient version
Coefficients were chosen to match the values ohtitenal version whelN = 5, namely,

a, =1 anda, = 196//5 = 088. TheC value is identical with that of the normal test,
namely 0.052. Thus, the criterion for the methindise equivalent is:

\)?\ +088S< 0.052

ForN = 5 the failure rate curve matches that of themabiversion. However, unlike the
normal and Studenitversion, at high bias the failure rate increaseadly as sample size
increases, as shown below.

Failurerateversusbiasfor constant coefficient version
C =0.052, sd = 0.030
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The following chart shows the failure rate as acfion of standard deviation, with the
bias held constant at zero, for various samplessize

Failurerate versus standard deviation biasfor constant coefficient ver sion
C =0.052, bias=0
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As N increases, the failure curve for the bias conwetge step function, the step
occurring at a value ofC —a,S)/a, = 0.026. Since the step occurs at a lower value
than the normal or Studentersions, the constant coefficient version enggsnaller
asymptotic acceptable region than the other versiod its failure rate at high bias
increases faster than the other versions.

Unlike the other versions, the failure curve fag #tandard deviation converges to a step
function. The step occurs @t/ a, = 0.059, roughly twice the typical value of 0.030.
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Detailed performanceresultsfor the constant coefficient version

Staff chose the constant coefficient version begaus

the failure rate at high bias increased fasteaagpte size increased than the
other versions;

the coefficients can be chosen so that for a gisguare rate at zero bias, the
failure rate at high bias is higher than that &f dther version;

unlike the other versions, the failure curve fa gtandard deviation converges to
the ideal behavior as sample size increases.

The tables below summarize the constant coefficiergion’s performance in the three
ranges, based on Monte Carlo simulations usingethléstic standard deviations
discussed above. Units are parts per million.

Low range
Sample Size| Failure rateg Bias at which Standard deviation at which
at bias =0 | failure rate = 0.95| failure rate = 0.95 when bias =|0
5 0.10 0.027 0.046
6 0.07 0.026 0.044
7 0.05 0.025 0.043
8 0.04 0.024 0.042
Standard deviation used in simulation 0.015
Value of constant C 0.026
Asymptotic acceptable bias 0.013
Asymptotic acceptable standard deviation 0.030
Mid range
Sample Size| Failure rateg Bias at which Standard deviation at which
at bias =0 | failure rate = 0.95| failure rate = 0.95 when bias =|0
5 0.10 0.039 0.066
6 0.07 0.037 0.063
7 0.05 0.036 0.060
8 0.04 0.035 0.058
Standard deviation used in simulation 0.022
Value of constant C 0.038
Asymptotic acceptable bias 0.019
Asymptotic acceptable standard deviation 0.043
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High range

Sample Size| Failure rate Bias at which Standard deviation at which
at bias =0 | failure rate = 0.95| failure rate = 0.95 when bias =|0

5 0.10 0.053 0.096
6 0.08 0.050 0.090
7 0.06 0.048 0.088
8 0.04 0.047 0.084

Standard deviation used in simulation 0.030

Value of constant C 0.052

Asymptotic acceptable bias 0.026

Asymptotic acceptable standard deviation 0.059
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Conclusion

Using the constant coefficient version providessd for equivalence between primary
and secondary methods which minimizes the proltgbilat methods with high bias or
poor precision will qualify as equivalent. Thelfoling is a concise summary of the test.

An applicant must test a minimum of five paired pées in at least two of the
following formaldehyde ranges. The ranges mududethe high and low ends
of the concentrations over which the laboratorksde demonstrate equivalence:

Low 0-0.07 ppm
Mid 0.07 — 0.15 ppm
High 0.15-0.25 pmm

Each paired sample consists of one measuremehelyritmary method, and the
average of three samples by the secondary methlbadf these samples must be
on material from the same batch.

The measurements are those given directly by $mertive methods. The
secondary method may not be calibrated to the pyimathod.

The differences between the primary method measmeand average of
secondary method measurements are computed.

The meanX and sample standard deviati®of the differences are computed as
follows:

Y:iDi/n

S:J i(Di -X)?/(n-1)

To demonstrate equivalence between primary anchgacy methods, the
following criterion must be met:

W+ 088S<C

where C is equal to

Low range 0.026
Mid range 0.038
High range  0.052
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